Taking a Precision Cancer Medicine Approach to Develop Oncology Drugs That Target Mitosis
Forward-Looking Statements

Certain statements in this presentation are forward-looking within the meaning of the Private Securities Litigation Reform Act of 1995. These statements may be identified by the use of words such as "anticipate," "believe," "forecast," "estimated" and "intend" or other similar terms or expressions that concern Trovagene's expectations, strategy, plans or intentions.

These forward-looking statements are based on Trovagene's current expectations and actual results could differ materially. There are a number of factors that could cause actual events to differ materially from those indicated by such forward-looking statements. While the list of factors presented in the 10-K is considered representative, no such list should be considered to be a complete statement of all potential risks and uncertainties. Unlisted factors may present significant additional obstacles to the realization of forward-looking statements. Forward-looking statements included herein are made as of the date hereof, and Trovagene does not undertake any obligation to update publicly such statements to reflect subsequent events or circumstances.
Trovanegne’s Management Team
Proven Leadership in Oncology

Tom Adams, PhD
Executive Chairman

Mark Erlander, PhD
Chief Scientific Officer

Sandra Silberman, MD, PhD
Chief Medical Advisor

George Samuel, Esq.
VP, General Counsel

Vicki Kelemen
VP, Clinical Development

Copyright © 2018 Trovagene, Inc.
Scientific Advisors
Principal Investigators and Collaborators

► Jorge Cortes, MD – MD Anderson
 – Deputy Chair, Professor of Medicine, Department of Leukemia and Director of CML and AML programs

► Amer Zeidan, MBBS, MHS – Yale
 – Assistant Professor of Medicine

► Glenn Bubley, MD – Beth Israel Deaconess Medical Center
 – Director, Multidisciplinary Genitourinary Cancer Program

► David Einstein, MD – Beth Israel Deaconess Medical Center
 – Principal Investigator, mCRPC Phase 2 Trial

► Filip Janku, MD, PhD – MD Anderson
 – Associate Professor, Investigational Cancer Therapeutics (Phase 1 Clinical Trials Program)

► Michael Yaffe, MD, PhD – MIT
 – Director, MIT Center for Precision Cancer Medicine, Professor of Biology and Biological Engineering

► Heinz-Josef Lenz, MD, FACP – Norris Comprehensive Cancer Center, USC
 – Associate Director Adult Oncology and Co-Leader Gastrointestinal Cancers
Strategy for Oncology Drug Development

- Taking a precision cancer medicine approach to develop Onvansertib, a first-in-class, 3rd generation PLK1 inhibitor
- Leveraging a proven cancer target, PLK1
- Incorporating predictive clinical biomarkers
- Combining Onvansertib with already approved drugs
 - Phase 1b/2 trial of Onvansertib + cytarabine or decitabine in Acute Myeloid Leukemia (AML)
 - Phase 2 trial of Onvansertib + abiraterone acetate (Zytiga®)/prednisone in metastatic Castration-Resistant Prostate Cancer (mCRPC)
 - Phase 1b/2 trial of Onvansertib + FOLFIRI and bevacizumab in metastatic Colorectal Cancer (mCRC)
Onvansertib – Pipeline Within a Molecule
Opportunities in Leukemias/Lymphomas and Solid Tumors

<table>
<thead>
<tr>
<th></th>
<th>Preclinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>**Leukemias & **</td>
<td>Acute Myeloid Leukemia – Orphan Drug Designation in the U.S. and Europe</td>
<td>Phase 1b/2 trial in combination with low-dose cytarabine (LDAC) or decitabine</td>
<td></td>
</tr>
<tr>
<td>Lymphomas</td>
<td>Metastatic Castration-Resistant Prostate</td>
<td></td>
<td>Phase 2 trial in combination with Zytiga® (abiraterone acetate)/prednisone</td>
</tr>
<tr>
<td></td>
<td>Colorectal (CRC)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Lung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ovarian</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Others (adrenocortical, sarcomas, head and neck, skin, liver, pancreatic, ampullary)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid Tumor</td>
<td>Triple Negative Breast</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cancers</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Licensed Drug Candidate from NMS
Onvansertib – Polo-like Kinase 1 (PLK1) Inhibitor

- Largest oncology research and development company in Italy
- Developed anthracycline class of drugs (doxorubicin)
- Leader in protein kinase drug development (Polo-like Kinase Inhibitors)
- Identification and validation of molecular targets focused on driver oncogenes
- Excellent track record licensing innovative drugs to pharma/biotech companies including: Genentech (Roche), Ignyta (Roche), Novartis

Oncology Drug Discovery

- Licensed global development and commercialization rights for Onvansertib
- Nerviano will continue manufacturing GMP API and finished drug
- Two active INDs in place with the FDA
- Financing in place to advance clinical programs into mid-2019

IND = Investigational New Drug
Nerviano Oncology Portfolio Success

- Excellent track record licensing innovative drugs to pharma/biotech companies that have subsequently received FDA breakthrough status and priority review designation

<table>
<thead>
<tr>
<th>Licensed</th>
<th>Preclinical</th>
<th>Phase 1</th>
<th>Phase 2</th>
<th>Phase 3</th>
<th>Registered</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARRAY</td>
<td>Encorafenib (B-RAF IP)</td>
<td>Melanoma Braf mutation in combination with binimetinib</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Roche Ignyta</td>
<td>Entrectinib (TRK, ROS, ALK)</td>
<td>Non-Small Cell Lung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tiziana LIFE SCIENCES</td>
<td>Milciclib (CDK, other kinases)</td>
<td>Thymic Cancer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>trovagene</td>
<td>Onvansertib (PLK1 inhibitor)</td>
<td>AML and mCRPC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Servier Oncology</td>
<td>MPS1 Inhibitor</td>
<td>Solid Tumors</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genentech</td>
<td>ADC (PNU-652)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OXFORD BioTherapeutics</td>
<td>ADC (NMS-P945)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Leveraging a Proven Cancer Target
PLK1 – Established Target for Cancer Therapy

PLK1 Plays a Critical Role in Initiation, Maintenance and Completion of Mitosis

▶ Polo-like Kinase 1 (PLK1)

- Belongs to a family of kinases (PLK1,2,3,4,5)
- Dysfunction leads to cancer formation and progression
- Over-expressed in dividing cancer cells
- Inhibition leads to cancer cell death

1Liu et al- PLK1, A Potential Target for Cancer Therapy; Translational Oncology – Vol. 10 – pp. 22-32; February 2017
PLK1 – Over-Expressed in Multiple Cancers

<table>
<thead>
<tr>
<th>Tumor Type</th>
<th>PLK1 Fold Change Over-Expression</th>
</tr>
</thead>
<tbody>
<tr>
<td>AML</td>
<td>13.0</td>
</tr>
<tr>
<td>B-cell Lymphoma</td>
<td>56.3</td>
</tr>
<tr>
<td>Prostate</td>
<td>3.3</td>
</tr>
<tr>
<td>Adrenocortical</td>
<td>4.5</td>
</tr>
<tr>
<td>Lung Adeno</td>
<td>9.7</td>
</tr>
<tr>
<td>Lung Squamous</td>
<td>20.8</td>
</tr>
<tr>
<td>Breast</td>
<td>11.3</td>
</tr>
<tr>
<td>Esophageal</td>
<td>10.2</td>
</tr>
<tr>
<td>Stomach</td>
<td>4.8</td>
</tr>
<tr>
<td>Colon</td>
<td>2.5</td>
</tr>
<tr>
<td>Head & Neck</td>
<td>4.2</td>
</tr>
<tr>
<td>Pancreatic</td>
<td>2.2</td>
</tr>
<tr>
<td>Ovarian</td>
<td>31.7</td>
</tr>
<tr>
<td>Glioblastoma</td>
<td>12.4</td>
</tr>
<tr>
<td>Kidney</td>
<td>4.7</td>
</tr>
<tr>
<td>Liver</td>
<td>11.7</td>
</tr>
<tr>
<td>Uterine</td>
<td>21.3</td>
</tr>
<tr>
<td>Bladder</td>
<td>9.1</td>
</tr>
</tbody>
</table>

1Liu et al- PLK1, A Potential Target for Cancer Therapy; Translational Oncology – Vol. 10 – pp. 22-32; February 2017
Developing Onvansertib
First-in-Class
3rd Generation PLK1
Onvansertib First-in-Class 3rd Generation PLK1 Best-in-Class Attributes
Onvansertib Intellectual Property

- Four worldwide patent families
 - Genus, Compound, Combinations, Salt
- Mature portfolio
 - Granted in most major jurisdictions
- Patent term 2030 plus up to 5 years extension
Onvansertib – Highly-Selective Only for PLK1

Selective PLK1 Inhibitor

► Tested against >260 kinases
► PLK1 was the only active target (IC$_{50}$ of 2nM)

Causes cancer cell death by G$_2$M arrest

► Onvansertib blocks cell division (mitosis)

<table>
<thead>
<tr>
<th>PLK Member</th>
<th>Onvansertib IC$_{50}$* (μM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PLK1</td>
<td>0.002</td>
</tr>
<tr>
<td>PLK2</td>
<td>> 10</td>
</tr>
<tr>
<td>PLK3</td>
<td>> 10</td>
</tr>
</tbody>
</table>

Data on File, Trovagene, Inc.

AML-NS8 Patient-Derived Cells Treated with 200 nM Onvansertib for 24 Hrs1

1Data on File, Trovagene, Inc.
Onvansertib Phase 1 Safety Trial \(^1\)
Favorable First-in-Human Data

Phase 1 Dose Escalation Trial in Patients with Advanced or Metastatic Solid Tumors

Trial Design

- Open-label dose escalation to assess safety and identify Phase 2 dose
- 19 patients administered Onvansertib orally, once daily for 5 consecutive days, every 21-days
- Solid Tumors: colorectal, pancreatic, lung, sarcomas, hepatocellular, ampullary, prostate, ovarian, skin

Trial Results

1. Established safety and identified Phase 2 dose of 24 mg/m\(^2\)/day
2. 16 patients evaluable with 30% stable disease
3. Only mild to moderate side effects
4. No GI disorders, mucositis, or hair loss

\(^1\)Weiss G et al., Phase I dose escalation study of NMS-1286937, an orally available Polo-like Kinase 1 inhibitor, in patients with advanced or metastatic solid tumors – Invest. New Drugs DOI 10.1007/s10637-017-0491-7
Benefiting From Drug Class Experience
Drawbacks Associated with 1st and 2nd Generation PLK Inhibitors

Prior PLK inhibitors in development demonstrated significant clinical activity in combination with standard-of-care chemotherapy in AML.

Major drawbacks, unrelated to efficacy of the drug class, resulted in discontinuation of development.

- **Non-Selective**
 - panPLK inhibitors targeting both normal and tumor cells
- **Significant Toxicities**
 - Serious adverse effects that are non-mechanism based
- **Sub-Optimal PK**
 - Intravenous formulation; relatively long half-life
- **No Dosing/Schedule Flexibility**
 - Fixed dose; no option to increase time between treatment
- **Lethal Infections**
 - No mandated anti-infective prophylaxis
- **No Biomarker Strategy**
 - Inability to identify patients most likely to respond
Onvansertib – First-in-Class, 3rd Generation PLK1 Addresses Drawbacks of 1st and 2nd Generation

- Onvansertib product profile and clinical development program effectively addresses drawbacks associated with 1st and 2nd generation PLK inhibitors

<table>
<thead>
<tr>
<th>Feature</th>
<th>Benefit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Highly-Selective</td>
<td>Selective only for PLK1 which is overexpressed in tumor cells</td>
</tr>
<tr>
<td>Safe and Well Tolerated</td>
<td>Only mild to moderate side effects reported</td>
</tr>
<tr>
<td>Ideal PK Properties</td>
<td>Orally administered and relatively short half-life of ~24 hours</td>
</tr>
<tr>
<td>Dosing and Treatment Schedule Flexibility</td>
<td>Dose individualized to patients based on weight and body surface area; flexibility to increase time between treatment</td>
</tr>
<tr>
<td>Proactive Infection Management</td>
<td>Protocol mandated prophylactic anti-infectives for all patients</td>
</tr>
<tr>
<td>Biomarker Strategy</td>
<td>Ability to identify patients most likely to respond to therapy</td>
</tr>
</tbody>
</table>
Combination Therapy Approach
Onvansertib Combination Therapy Strategy

- Cornerstone of precision cancer medicine
- Onvansertib has demonstrated synergy with chemotherapies and targeted therapeutics
- Enhances efficacy (targets key pathways by synergy or additive effect)
- Reduces drug resistance, while providing therapeutic benefits

Onvansertib – Synergistic in Combination

- High PLK1 expression is associated with the most aggressive cancers
- Synergistic activity may enhance efficacy of standard-of-care therapies

<table>
<thead>
<tr>
<th>Potentially Synergistic Drugs(^1,2)</th>
<th>Associated Cancers(^2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abiraterone acetate</td>
<td>Leukemias/Lymphomas:</td>
</tr>
<tr>
<td>Bevacizumab</td>
<td>- Acute Myeloid Leukemia</td>
</tr>
<tr>
<td>Bortezomib</td>
<td>- Acute Lymphocytic Leukemia</td>
</tr>
<tr>
<td>Cisplatin</td>
<td>- Non-Hodgkin Leukemia</td>
</tr>
<tr>
<td>Cytarabine</td>
<td>- Multiple Myeloma</td>
</tr>
<tr>
<td>Doxorubicin</td>
<td>Solid Tumor Cancers:</td>
</tr>
<tr>
<td>FLT3 Inhibitors (Quizartinib)</td>
<td>- Castration-Resistant Prostate</td>
</tr>
<tr>
<td>Gemcitabine</td>
<td>- Adrenocortical Carcinoma</td>
</tr>
<tr>
<td>HDAC Inhibitors (Belinostat)</td>
<td>- Triple Negative Breast</td>
</tr>
<tr>
<td>Paclitaxel</td>
<td>- Sarcomas</td>
</tr>
<tr>
<td></td>
<td>- Small Cell Lung</td>
</tr>
<tr>
<td></td>
<td>- Colon</td>
</tr>
</tbody>
</table>

\(^1\) Alphabetical order. \(^2\) Preclinical data on file with PCM-075 and these combined therapeutics
Onvansertib Rationale for Combination with DNA Damaging Agents1,2

DNA Damage Response (DDR) arrests cells at G2/M checkpoint

Mitosis
1. Checkpoint adaptation
2. PLK1 inhibits DDR, induces mitotic entry for tumor cells & cell division

G2/M Arrest

DNA Damaging Agents
- Cytarabine
- Doxorubicin
- Cisplatin

Cell Death
1. Keeps tumor cells in G2/M arrest leading to apoptosis
2. For cells that escape, mitosis is blocked, also leading to apoptosis

1van Vugt & Yaffe, Cell Cycle 2010 9:2097-2101; 2van Vugt et al., 2010, PLoS 8:1-19
Onvansertib (PCM-075) + FLT3 Inhibitor
Acute Myeloid Leukemia (AML)

► 30% of AML patients have a FLT3 mutation¹

► Quizartinib in Phase 3 clinical development²

► Combination of PCM-075 + quizartinib demonstrated:
 – 97% tumor growth inhibition
 – Regression in FLT3 AML xenograft model³

Onvansertib (PCM-075) + Abiraterone
Metastatic Castration-Resistant Prostate Cancer

► PCM-075 + abiraterone demonstrated synergy¹

► Combination enhances PCM-075 mechanism of action¹

► Medical need to increase duration of response to anti-androgen drugs

¹Yaffe, Michael, MD and Trovagene, 2017

C4-2 Castration-Resistant Prostate Cancer Cells Increased Sensitivity to Abiraterone in the Presence of PCM-075

Expected = the calculated value of the effect of the addition of each drug as calculated by Michael Yaffe, MD - MIT
Onvansertib (PCM-075)
Clinical Development

Phase 1b/2 Acute Myeloid Leukemia (AML)

Phase 2 metastatic Castration-Resistant Prostate Cancer (mCRPC)

Phase 2 metastatic Colorectal Cancer (mCRC)
Clinical Development Roadmap

Acute Myeloid Leukemia

Prostate Cancer

Colorectal Cancer
Acute Myeloid Leukemia\(^1\)
Significant Need for New Treatment Options

- Aggressive hematologic malignancy of immature blood cells
- 20,000 new cases, 10,400 deaths annually, and 5 year survival rate of 25%
- Treatment options vary based on patient condition / age, but can include:
 - Chemotherapy / Radiation / Stem Cell Transplant
- Preclinical *in-vitro* and *in-vivo* data demonstrate efficacy of Onvansertib\(^*\) as single agent and in combination with drugs used to treat AML

\(^*\)Orphan Drug Designation granted for Onvansertib by the FDA September, 2017 and by the EMA in July, 2018;\(^1\)National Cancer Institute SEER 2016;\(^2\)Valsasina et al., Mol Cancer Ther; 11(4) April 2012
AML Clinical Development Landscape\(^1\)

Medical Need for New Therapeutic Options

- The majority of therapeutic advances for AML have not come from the introduction of novel therapeutics but instead from optimizing use of older drugs\(^2\)

- With increased understanding of the molecular pathogenesis of AML in recent years there is a significant opportunity to introduce new targeted therapeutics\(^2\)

Significant Opportunity for New Therapeutic Options

<table>
<thead>
<tr>
<th>Company</th>
<th>Market Cap</th>
<th>Drug</th>
<th>Combination</th>
<th>Development</th>
</tr>
</thead>
<tbody>
<tr>
<td>trovagene</td>
<td>$15M</td>
<td>Onvansertib (PLK1 inhibitor)</td>
<td>Cytarabine / Decitabine</td>
<td>Phase 1b/2</td>
</tr>
<tr>
<td>cti Biopharma</td>
<td>$104M</td>
<td>Tosedosat (aminopeptidase activity inhibitor)</td>
<td>Cytarabine / 5-Azacytadine</td>
<td>Phase 1/2</td>
</tr>
<tr>
<td>AVEO Oncology</td>
<td>$288M</td>
<td>Ficlatuzumab (antibody targeting HGF)</td>
<td>Cytarabine</td>
<td>Phase 1</td>
</tr>
<tr>
<td>agios</td>
<td>$4.5B</td>
<td>Tibsovo (IDH1 Inhibitor)</td>
<td>Single Agent</td>
<td>FDA Approved</td>
</tr>
<tr>
<td></td>
<td></td>
<td>AG-221 (IDH2 Inhibitor)</td>
<td>Single Agent</td>
<td>Phase 1/2</td>
</tr>
</tbody>
</table>

\(^1\)www.clinicaltrials.gov; \(^2\)www.hematology.org/TheHematologist/Years-Best/8155.aspx
Onvansertib (PCM-075) Scientific Rationale
Clinical Development in AML

► in-vitro studies¹
 – High sensitivity of hematological tumor cell lines to PCM-075

► in-vitro and in-vivo mode of action (MoA) studies²
 – Xenograft model demonstrates dose dependent inhibition of PLK1 activity and G2/M arrest

► in-vivo efficacy in AML xenograft models²
 – Dose dependent efficacy of PCM-075 in
 • HL60 promyelocytic leukemia xenograft
 • Disseminated AML patient derived xenografts (AML-PS)
 – Combination of PCM-075 + cytarabine has greater survival than either agent alone (AML-PS)

¹Source: Report No. N-0018670 Antiproliferative activity of NMS-1286937 in a panel of cell lines;²Valsasina et al., Mol Cancer Ther; 11(4) April 2012; ³ClinicalTrials.gov, NCT03303339: PCM-075 in Combination With Either Low-dose Cytarabine or Decitabine in Adult Patients With Acute Myeloid Leukemia (AML) - Data-on-file, Trovagene 2018
Orphan Drug Designation (ODD) in AML

In the U.S. and Europe

Regulatory and Financial Incentives

Extended Market Exclusivity
Onvansertib Comparative and Combination with Cytarabine in AML Models1,2

In Vivo Disseminated Leukemia Models

- Onvansertib 60 mg/kg BID (Days 1-2 with 5-day rest) + cytarabine 75 mg/kg IP Injection (Days 1-5 with 5-day rest)
- Onvansertib 120 mg/kg for 2 days repeated for 4 cycles with a 10-day rest
- Cytarabine IP at 75mg/kg for 5 cycles of 5 consecutive days with 7-day rest
- The combination was given at the same schedule, doses, and routes of the single agents

Onvansertib + cytarabine in combination showed increased survival compared to either agent alone

1Casolaro et al. (2013) PLOS One 8(3); 2Valsasina et al. (2012), Mol Cancer Ther 11(4)
Onvansertib Positioning in AML Patient Selection Algorithm

- AML Diagnosis: 18,376 cases/year
- Eligible for Induction Treatment: ~11,000
- Ineligible for Induction Treatment: ~7,400
- Relapsed & Refractory: 30-50%
 - 3,300 to 5,500
- Responders: 50-70%
- Consolidation Treatment

Onvansertib in combination with standard-of-care chemotherapy and/or targeted therapeutics

1 Visser et al. (2012), Eur J Cancer (48). Estimated cases in EU27 per year; 2 e.g. Midostaurin for FLT3 mutation
Ongoing Phase 1b/2 Clinical Trial in AML

Onvansertib in Combination with Either Low-Dose Cytarabine or Decitabine in Patients with Acute Myeloid Leukemia (AML)

Phase 1b: Dose escalation to assess safety and identify recommended Phase 2 dose

- **12 mg/m²**
- **18 mg/m²**
- **27 mg/m²**
- **40 mg/m²**

► Administered orally, once daily on days 1-5 of each cycle (21-28 days)

Phase 2: Assess safety and preliminary antitumor activity

► **Efficacy Endpoints:** Rate of complete response (CR + CRi) defined as morphologic leukemia-free state (MLF)

► **Exploratory Endpoints:** Evaluation of pharmacodynamic and correlative biomarkers
Biomarker Strategy in AML

- Biomarkers will be measured and correlated with pharmacokinetic drug levels to assess:
 - Treatment effects by measuring % blast cells in blood and bone marrow
 - Inhibition of PLK1 by Onvansertib (Target Engagement)
 - Correlating underlying tumor genetics with treatment response

Genomic Profiling:
- Tumor Mutations

Immuno-Profiling

PLK1 Target Engagement
- pTCTP/TCTP

Procedural Flow
- Cell Isolation
- DNA Isolation
- Flow Cytometry
- Protein Extraction
- Cell Isolation
Immuno-Profiling: Monitoring Leukemic Blast Cells in Response to Treatment

% of Leukemic Cells in Blood

%Leukemic Cells in Bone Marrow (Trovagene analysis)

%Leukemic Cells in Bone Marrow (Clinical site analysis)

1NCT03303339, ClinicalTrials.gov; *Onvansertib in Combination With Either Low-dose Cytarabine or Decitabine in Adult Patients With Acute Myeloid Leukemia (AML)
Onvansertib inhibits PLK1 kinase activity resulting in reduction in PLK1 substrates phosphorylation; Translational Control Tumor Protein (TCTP) is phosphorylated by PLK1.

PLK1 inhibition was assessed 3-hours following administration of Onvansertib at peak concentration (C_{max}).

1Cusshi U. et al, Phosphorylation of TCTP as a Marker for Polo-like Kinase 1 Activity In Vivo – Anticancer Research December 2010 vol. 30 no. 12 pp. 4973-4985
Correlation of Target Engagement and Treatment Response

% of Leukemic Cells in Blood

Cycle 1 Cycle 2
Onvansertib + LDAC
- 01-002
- 07-004
- 07-010

Days of cycle

Onvansertib 12mg/m² + LDAC

01-002
- D1 0h 3h 0h
- D5

07-004
- D1 0h 3h 0h
- D5

07-010
- D1 0h 3h 0h
- D5

pTCTP status as a surrogate for PLK1 inhibition

% of Leukemic Cells in Blood

Cycle 1 Cycle 2
Onvansertib + Decitabine
- 07-009
- 07-011
- 07-013

Days of cycle

Onvansertib 12mg/m² + Decitabine

07-009
- D1 0h 3h 0h
- D5

07-011
- D1 0h 3h 0h
- D5

07-013
- D1 0h 3h 0h
- D5

pTCTP status as a surrogate for PLK1 inhibition

Copyright © 2018 Trovagene, Inc.
Summary of Target Engagement and Correlation to Treatment Response

Onvansertib 12mg/m² + Cytarabine

Onvansertib 12mg/m² + Decitabine

- D1 predose (0h)
- D1 post dose (3h)
- D5

- pTCTP/TCTP relative to D1 predose

- % Blasts

- Response

Copyright © 2018 Trovagene, Inc.
Predictive Response Strategy

Evaluating Patient Responsiveness to Onvansertib

AML Patient

Patient receives single dose Onvansertib

Assess target engagement of PLK1 by Onvansertib

Target Engagement Eligible Patient

NO Target Engagement Non-Eligible Patient

1Trovagene Patent Pending – PLK1 Target Phosphorylation Status and Treatment of Cancer with PLK1 Inhibitors
<table>
<thead>
<tr>
<th>AML Genomic Subgroup</th>
<th>Frequency of Patients</th>
<th>Most Frequently Mutated Genes (%)</th>
<th>DNA Panel</th>
<th>RNA Panel</th>
</tr>
</thead>
<tbody>
<tr>
<td>NPM1 mutation</td>
<td>27%</td>
<td>NPM1(100), DNMT3A(54), FLT3(39), NRAS(19), TET2(16), PTPN11(15)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>Mutated chromatin, RNA-splicing genes, or both</td>
<td>18%</td>
<td>RUNX1(39), MLLPTD(25), SRSF2(22), DNMT3A(20), ASXL1(17), STAG2(16), NRAS(16), TET2(15), FLT3ITD(15)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>TP53 mutations, chromosomal aneuploidy, or both</td>
<td>13%</td>
<td>Complex karyotype(68), -5/5q(47), -7/7q(44), TP53(44), -17/17p(31), +8/8q(16)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>inv(16)(p13.1q22) or t(16;16)(p13.1;q22); CBFB-MYH11</td>
<td>5%</td>
<td>inv(16) (100), NRAS(53), +8/8q(16), KIT(15), FLT3TKD(15)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>biallelic CEBPA mutations</td>
<td>4%</td>
<td>CEBPAbiallelic(100), NRAS(30), WT1(21), GATA2(20)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>t(15;17)(q22;q12); PML-RARA</td>
<td>4%</td>
<td>t(15;17) (100), FLT3 ITD(35), WT1(17)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>t(8;21)(q22;q22); RUNX1-RUNX1T1</td>
<td>4%</td>
<td>t(8;21) (100), KIT(38), -Y(33), -9q(18)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>MLL fusion genes; t(x;11)(x;q23)</td>
<td>3%</td>
<td>t(x;11q23) (100), NRAS(23)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>inv(3)(q21q26.2) or t(3;3)(q21;q26.2); GATA2,MECOM(EVI1)</td>
<td>1%</td>
<td>inv(3) (100), -7(85), KRAS(30), NRAS(30), PTPN11(30), ETV6(15), PHF6(15), SF3B1(15)</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>IDH2R172 mutations and no other class-defining lesions</td>
<td>1%</td>
<td>IDH2R172(100), DNMT3A(67), +8/8q(17)</td>
<td>X</td>
<td></td>
</tr>
<tr>
<td>t(6;9)(p23;q34); DEK-NUP214</td>
<td>1%</td>
<td>t(6;9) (100), FLT3ITD(80), KRAS(20)</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

1Papaemmanuil et al. Genomic classification and prognosis in acute myeloid leukemia; NEJM 2016;374:2209-2221
Genomic Profiling: Correlation of Mutation Detected in Blood and % Leukemic Cells

- Genomic analysis was performed on bone marrow and blood samples
- Mutations detected in bone marrow and blood were identical for all patients examined
- The mutation allelic frequencies detected in blood correlates with % of circulating leukemic cells

<table>
<thead>
<tr>
<th>Patient</th>
<th>Mutations detected</th>
</tr>
</thead>
<tbody>
<tr>
<td>07-004</td>
<td>TP53 c.955 A>T p.Lys319Ter</td>
</tr>
<tr>
<td>07-011</td>
<td>TP53 c.773A>C p.Glu258Ala</td>
</tr>
</tbody>
</table>
25,000 men die from metastatic prostate cancer annually and the five-year survival rate is 37%.

Treatments
- Zytiga® (Johnson & Johnson)/prednisone
- Xtandi® (Astellas/Pfizer)

Ongoing need to increase duration of response to treatment
- Patients develop resistance within 9-15 months and do not respond well to subsequent therapies

Preclinical studies demonstrate synergy between Onvansertib and Zytiga®
- PLK1 inhibition improves abiraterone efficacy by repressing the androgen signaling pathway.

PLK1 and Abiraterone Acetate (Zytiga®)
Metastatic Castration-Resistant Prostate Cancer (mCRPC)

► All metastatic prostate cancer patients become castration-resistant

► PLK1 dependent microtubule dynamics promotes androgen receptor (AR) signaling¹,²

► PLK1 inhibition improves abiraterone efficacy³

► Inhibition of PLK1 represses androgen signaling pathway⁴

► PLK1 inhibitors may add important therapeutic benefit for the treatment of castration-resistant prostate cancer patients⁵

Ongoing Phase 2 Clinical Trial in mCRPC

Onvansertib in Combination with Zytiga® and Prednisone in Patients with Metastatic Castration-Resistant Prostate Cancer (mCRPC)

<table>
<thead>
<tr>
<th>Dosing Regimen</th>
<th>Duration</th>
<th>Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Onvansertib – 24 mg/m² Days 1-5 (21-Day Cycle) + Zytiga®/prednisone daily</td>
<td>4 Cycles = 12 Weeks</td>
<td>Disease Control based on PSA level</td>
</tr>
</tbody>
</table>

Efficacy Endpoints

Effect of Onvansertib in combination with Zytiga®/prednisone on disease control assessed by prostate-specific antigen (PSA) decline or stabilization pre- and post-treatment

Safety Endpoint

Safety of Onvansertib in combination with Zytiga®/prednisone

Exploratory Endpoint

Target inhibition of PLK1, evaluation of relevant biomarkers and correlation with patient response and genomic profile
Biomarker Strategy in mCRPC

- PSA: Assessment of Disease Control
- ctDNA: Dynamic Changes Associated with Treatment
- CTCs: Baseline Genomic Correlations with Response
- PBMC’s: Assess PLK1 Target Inhibition
- Tissue: Baseline Tumor Profiling for Predicting Synergy
PSA: NCCN Recommended Biomarker Trial Eligibility and Efficacy for mCRPC

► PSA is a validated biomarker assessing disease stability or progression

► Prostate Cancer Clinical Trials Working Group (PCWG)\(^1\) has set criteria for the use of blood PSA levels:
 – Trial eligibility (defining progression)
 – Initial assessment of efficacy

\(^1\)PCWG2: Sher et al, JCO, 2008, PCWG3: Sher et al, JCO, 2016
Biomarker Assessment Schedule

Week:

- Cycle 1: Week 1
- Cycle 2: Week 3
- Cycle 3: Week 6
- Cycle 4: Week 9
- Cycle 5: Week 12

Primary Endpoint: Proportion of patients achieving disease control after 12 weeks of study treatment, as defined by lack of PSA progression
140K new cases of CRC in 2018 with 64.5% 5 year survival
- ~51K deaths per year from mCRC

Tumor biomarkers drive therapy decisions for 1st line mCRC therapy
- ~50% mCRC is RAS mutant (KRAS): FOLFOX/FOLFIRI/FOLFOXIRI

Large unmet need in RAS mutant CRC
- No targeted therapies are available for RAS mutant CRC
- 2nd line therapies have ~5% response rate in metastatic CRC (mCRC)

Onvansertib in Pre-Clinical CRC Synergy with Irinotecan

In vitro:
- CRC cell lines are sensitive to Onvansertib:

 25/27 cell lines tested had an IC50<1uM and 10 had an IC50<0.1uM

- Onvansertib is synergistic with paclitaxel, cisplatin, SN-38 and irinotecan

In-vivo:
- Onvansertib inhibits tumor growth of CRC xenograft models

 3 independent models were tested and Onvansertib induces maximal tumor regression of ~84% compared to vehicle

- The combination of Onvansertib with Irinotecan significantly reduces tumor growth compared with vehicle or either single agent treatment

1Data on File at Trovagene, Inc.
KRAS Mutation: Multiple *in-vitro* Studies Indicate Mutation is Biomarker for Onvansertib Sensitivity

- In a genome-wide RNAi screen there was found a synthetic lethal interactions (profound mitotic block/death) with KRAS oncogene and PLK1; Tested in 2 mutant & isogenic cell lines

- KRAS-mutant cancer cell lines are more sensitive to PLK1 inhibition (BI2536)

- KRAS mutated NIH3T3 cells showed higher sensitivity to onvansertib compare to KRAS wild-type (WT) cells

Value Creating Milestones

Q4’18

✓ AML – ASH Presentation
✓ Efficacy and Safety Data Readouts (AML, mCRPC)
✓ mCRC IND & Protocol Filed to FDA

Q2’19

✓ Initiate mCRC Phase 1b/2 Trial
✓ Efficacy and Safety Data Readouts (AML, mCRPC)
✓ AACR Presentation (AML, mCRPC)
✓ Complete Enrollment of AML Phase 2
✓ Complete Enrollment of mCRPC Phase 2
✓ AML Companion Diagnostic

Q4’19

✓ Data Readouts (AML, mCRPC, mCRC)
✓ Begin Enrolling Phase 2 mCRC
✓ AML – ASH Presentation

Q1’19

✓ AML – Reach MTD and RP2D
✓ Begin Enrolling AML Phase 2 trial
✓ mCRPC – ASCO GU Presentation
✓ Efficacy and Safety Data Readouts (AML and mCRPC)
✓ Evaluate Expanding Clinical Program to Europe
✓ Formalize Japan Partnering

Q3’19

✓ Efficacy and Safety Data Readouts (AML and mCRPC)
✓ Assess Dose Escalation – Phase 1b mCRC Trial – Identify Phase 2 Dose
✓ Begin Enrolling mCRC Phase 2
Summary

► Precision Cancer Medicine, predictive biomarker approach

► Leveraging a proven cancer target, PLK1

► Onvansertib – first-in-class, 3rd generation, oral PLK1 inhibitor

► Synergy strategy – Onvansertib in combination with approved drugs
For additional information or questions please contact: ir@trovagene.com